SIMPÓSIO INTERNACIONAL LEISHMANIOSE VISCERAL: DESAFIOS PARA O CONTROLE NO CONTEXTO DA DIVERSIDADE DE CENÁRIOS

MODELAGEM E GEOTECNOLOGIAS EM ESTUDOS SOBRE AS LEISHMANIOSES [MODELING AND GEOSPATIAL TECHNOLOGIES ON LEISHMANIASIS STUDIES]

Elivelton da S. Fonseca

elivelton@unoeste.br

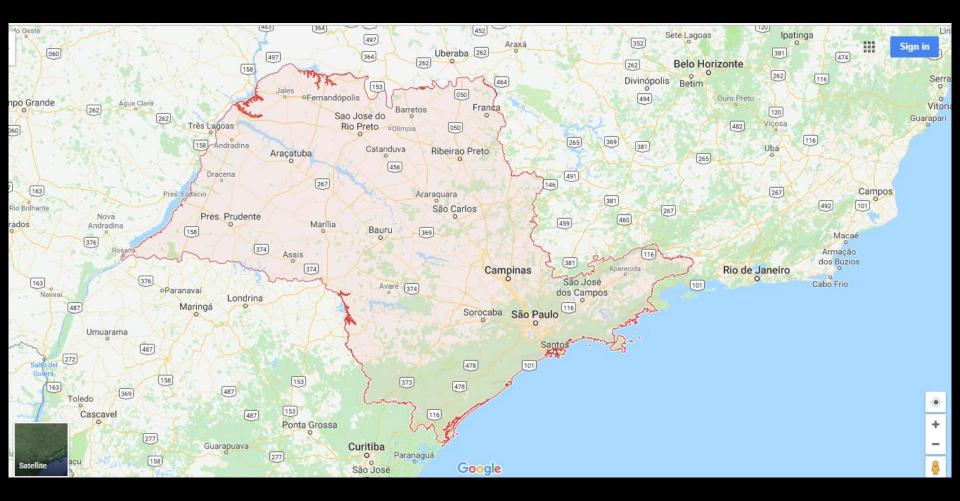
Grant numbers: FAPESP 1320781-7 and 2017/50333-7

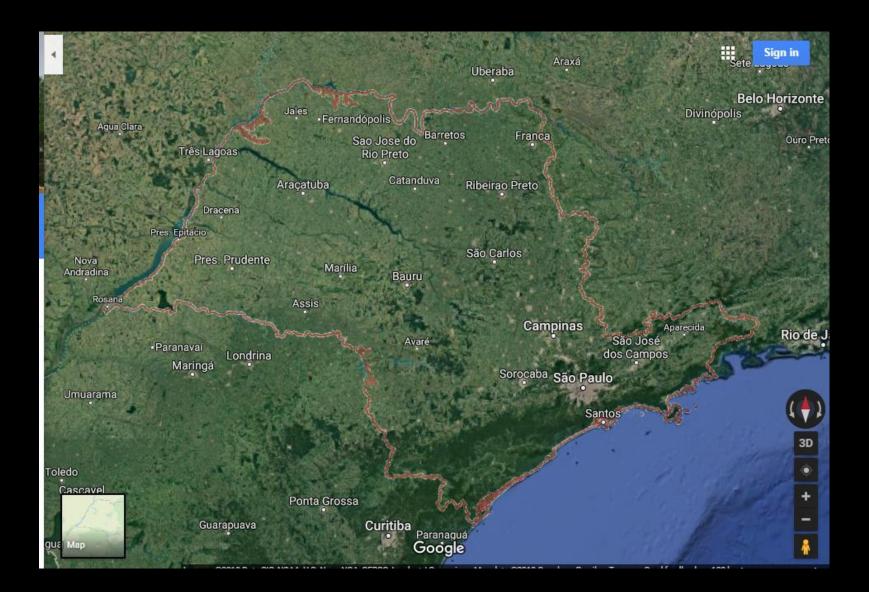
Faculdade de Medicina da Universidade de São Paulo. Av. Dr. Arnaldo, 455. Bairro: Cerqueira Cesar, São Paulo/SP.

Presentation outline

São Paulo State background.

Geospatial and Public Health on disease programs.


Why Geospatial Technologies?


Study routines, mastering methodologies.

Study case proposal – Vleish.

Fig. 1 — Mapa do municipio de Sao Paulo, localizando a região onde ocorreu o surto de leishmaniose tegumentar americana.

São Paulo State background

Population and density

- Population 43,932,763 mi Ilion
- population density of 177.23 inhabitants per km^{2.}
- Gross domestic product:
 1,985,359 (R\$ million)

Municipaliti es and area

- 645 municipalities
- Occupying an area of 248,219.63 km²
- 20.6 % of the Brazilian Population.

Topographic al Relief

 The relief units are: depressions, scarps and reverses, hills, plateaus, valleys and Cuestas.

Vegetation

- A semideciduous forest in the plateau.
- and rainforest in the Serra do Mar region.

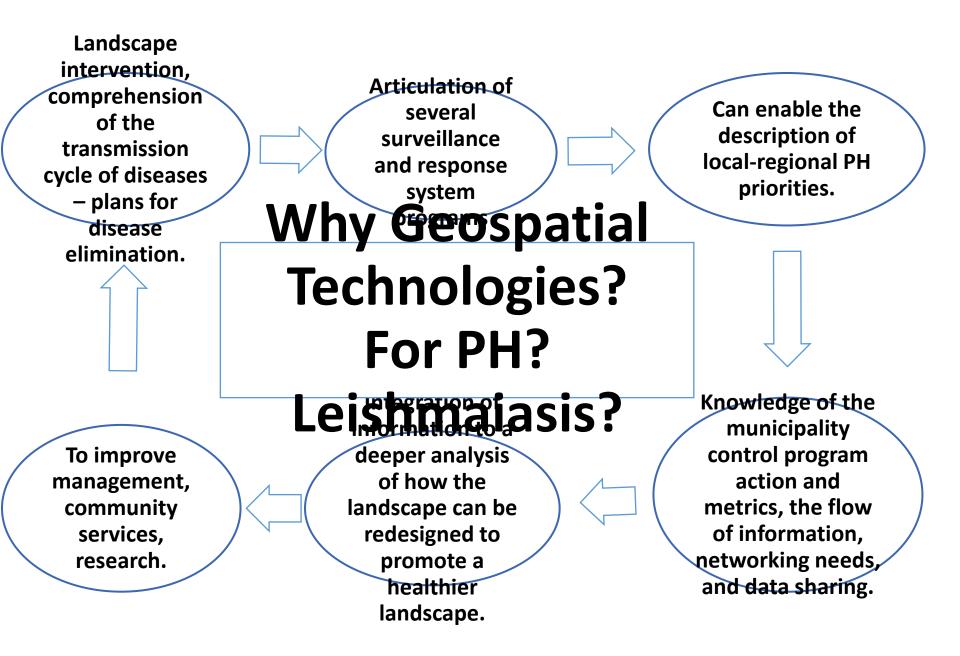
Geospatial and Public Health on disease programs

Literature layering spatial analysis for disease control programs, using time and geographical space as elements in understanding diseases and Public Health; Moreover, the set of techniques proposed in this paper can enable PH decision makers to organize information produced in a planning support system to envisage the organizational structure landscape and the impact of a set of actions.

How GeoHealth will work?

Hypothesis – Geospatial Techonologies can aid in unveiling the street-level bureaucracy and promote a better understanding of the intra-urban actions on disease control. GeoHealth -Implementation of a geospatial surveillance and response system data resource for vector borne disease in São Paulo will be tested using:

- NASA satellite data;
- Geographic information systems and;
- Community engagement in a HotSpot/GIS guided control


Statewide - To characterize the geospatial **GRADS and objectives** of sandflies in the state of

São Paulo, supported by ecological niche models (ENM).

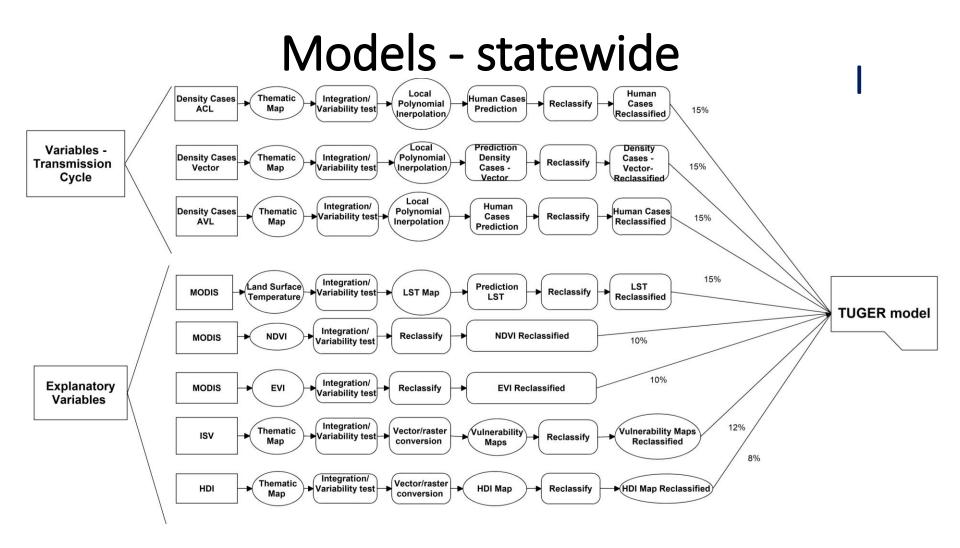
Community - To analyze, from the point of view of the set of Disease Control Programs, how the frontline intervention can influence the spatial distribution of diseases, or block the life cycle of parasites.

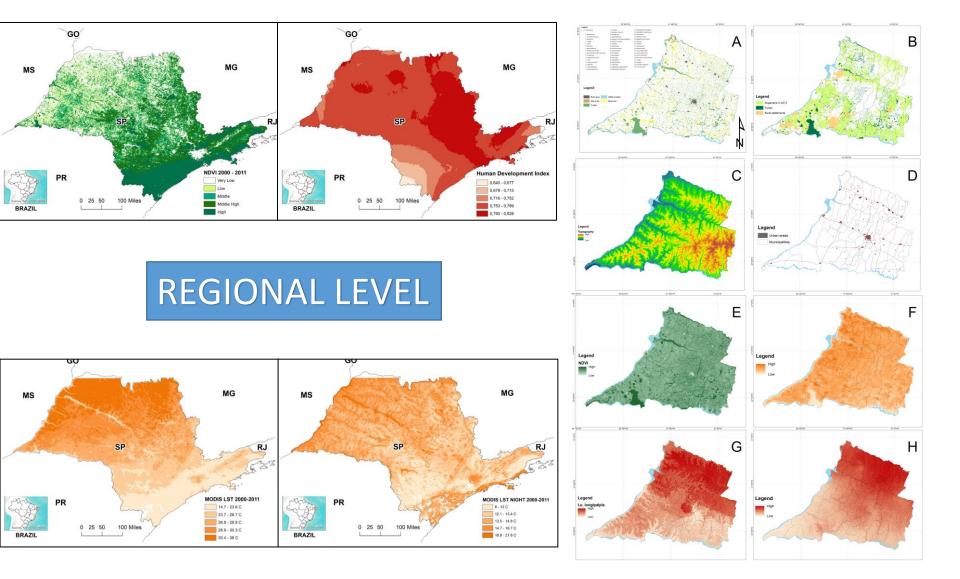
Specific objectives

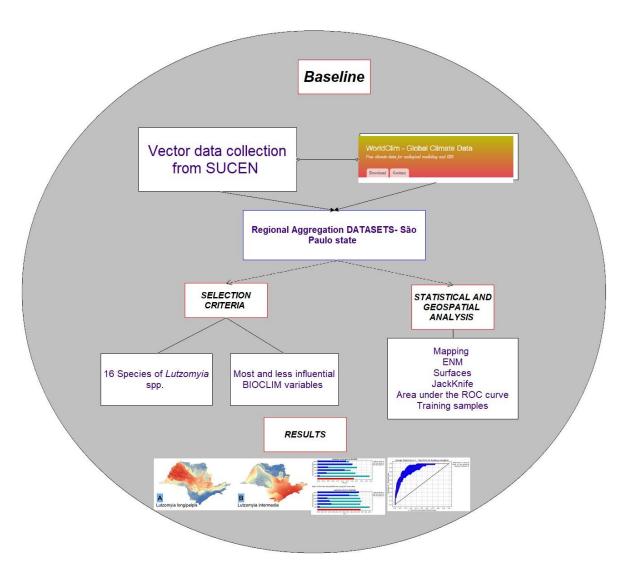
- Provide a platform for processing data resources to discover 'hidden' associations of disease for ENM as an alternative to classical hypothesis-driven statistical analysis.
- Implement dissemination and training programs to

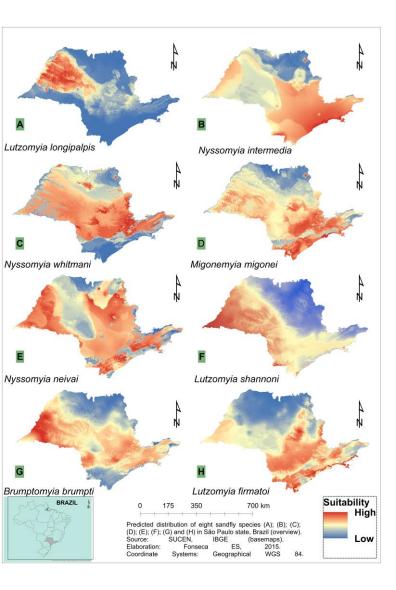
Study routines, mastering

Model:


A generic term - abstract solutions with computational support to solve complex problems (Williams, 1990). A modeling capability involves a separation of a set of meanings of particularities from the environment, in the form opdation of a set of meanings of problems and the form opdation of a set of meanings of problems and the form opdation of a set of meanings of problems and the form opdation of a set of meanings of problems and the form opdation of a set of meanings of a set of meanings of particularities from the environment, in the form opdation of a set of meanings of set of s


- Decision-making process as events (time related)


- Characterization patterns of environments that receive the name of entities (Moura ACM, 2003). Although there is a wide distribution of leishmaniasis throughout Brazil. The pattern of dispersion in endemic areas is poorly understood in terms of intrinsic environmental relationships


The state of São Paulo has <u>multiple eco-</u> <u>epidemiological settings</u> favorable to the transmission of leishmaniasis.

The expansion of reported cases to municipalities potentially carried from areas where the vector has previously been found.

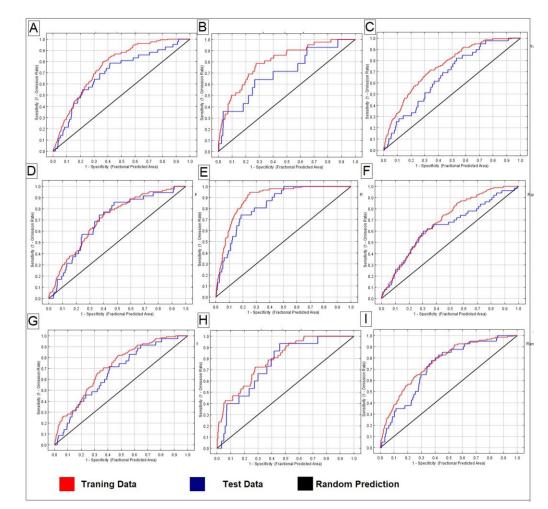
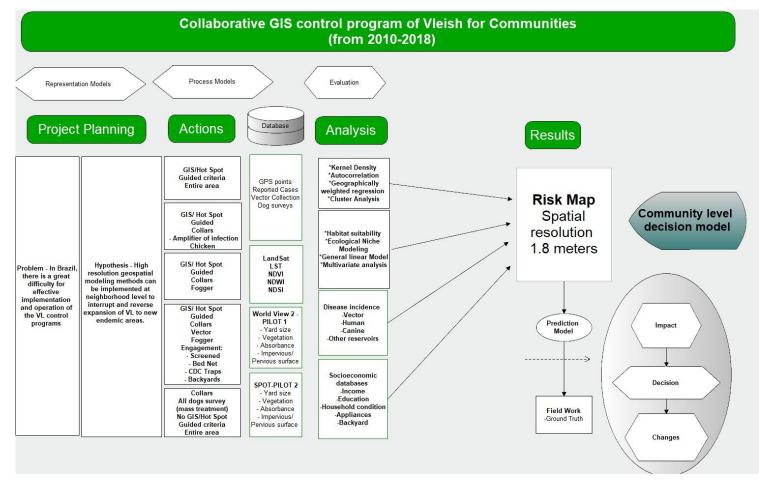



Figure 3 – Receiver operating characteristic (ROC) curve for the different species of sand-fly vector. Fig. 3: A: Nyssomyia whitmani. B: Lutzomyia cortelezii. C: Migonemyia migonei. (0.5). D: Lutzomyia ubiquita. E: Lutzomyia longipalpis. F: Nyssomyia intermedia. G: Nissomyia neivai. H: Lutzomyia monticola. I: Lutzomyia fischeri.

	Variable that produces the largest AUC when	Percent	*AUC	Variable that produces the smallest AUC	Percent	AUC
Species	included	contribution	value	curve	contribution	value
LL	Precipitation of Driest Month	21.3	0.835	Precipitation of Wettest Month	0.1	0.653
LI	Precipitation Seasonality (Coefficient of Variation)	30.9	0.642	Isothermality (BIO2/BIO7) (* 100)	8.5	0.633
LW	Temperature Seasonality (standard deviation *100)	33.8	0.697	Min Temperature of Coldest Month	10.2	0.667
LM	Temperature Seasonality (standard deviation *100)	29.3	0.665	Max Temperature of Warmest Month	8.3	0.581
LN	Mean Diurnal Range (Mean of monthly (max temp - min temp))	39.9	0.666	Mean Temperature of Driest Quarter	7	0.609
LS	Precipitation Seasonality (Coefficient of Variation)	55.6	0.591	Altitude	2.4	0.688
Llen	Isothermality (BIO2/BIO7) (* 100)	37.1	0.648	Precipitation Seasonality (Coefficient of Variation)	2.8	0.482
LF	Precipitation of Driest Month	52.1	0.678	Precipitation of Wettest Quarter	2.8	0.491
Lmon	Mean Temperature of Driest Quarter	56.4	0.754	Temperature Annual Range (BIO5-BIO6)	6.4	0.622
LC	Precipitation of Wettest Quarter	29.8	0.701	Precipitation of Driest Quarter	8.9	0.722
LE	Mean Diurnal Range (Mean of monthly (max temp - min temp))	53.6	0.762	Precipitation of Wettest Month	6.6	0.511
LA	Min Temperature of Coldest Month	67.2	0.891	Mean Temperature of Warmest Quarter	0.8	0.699
Llan	Mean Diurnal Range (Mean of monthly (max temp - min temp))	70.4	0.935	Precipitation of Warmest Quarter	5.4	0.542
LG	Altitude	56.6	0.631	Mean Diurnal Range (Mean of monthly (max temp - min temp))	8.1	0.572
LB	Precipitation of Driest Month	31.7	0.581	Max Temperature of Warmest Month	8.5	0.547
Lfis	Mean Diurnal Range (Mean of monthly (max temp - min temp))	23.1	0.724	Mean Temperature of Coldest Quarter	8.2	0.581
	*AUC Lutzomyia Longipalpis					

Models – community-based level

Concluding remarks											
			Тентатко		Collection of						
	Actions in climate change and health	Contextual solutions for hotspots of		Multidimensi onal information	data and increasy of analytical						
	More adaptative solutions	infection Social determinants	Learn from the past for alternative futures	New techniques for spatial prediction	capacity Complexity and One-size- fits-all						
	Multiple species simultaneousl	E- Epidemiology		Resource poor policy- makers	Post elimination period						
	y Neocartograp hy	Health in all policies		Anthropocen e	Construction of landscape models						

Acknowledgement

John B. Malone Jeffrey Luvall José Eduardo Tolezano Raul Borges Guimarães Archie Clements Louisiana state university MSFC – NASA Adolfo lutz institute São Paulo state university Curtin Universty

PARTNERSHIP

Unoeste

Thank you! I will take questions!